Respiration

1.

	o NAD o AMP o ADP o ATP
2.	The stage of respiration in which glucose is converted to pyruvate is:
	 phosphorylation the Krebs cycle the electron transport chain oxidative phosphorylation
3.	The stage of respiration during which carbon dioxide is evolved is:
	 phosphorylation the Krebs cycle the electron transport chain oxidative phosphorylation
4.	The stage of respiration during which water is evolved is:
	 the Krebs cycle phosphorylation oxidative phosphorylation the electron transport chain
5.	The net number of ATP molecules produced when one molecule of glucose passes through the anaerobic stage of respiration is:
	 3 4 1 2
6.	When one molecule of high energy NAD enters the electron transfer chain during oxidative phosphorylation, the number of ATP molecules formed is:
	 4 3 1 2
7.	If one molecule of glucose is completely oxidised to H ₂ O and CO ₂ , a total of:
	 32 molecules of ATP may be produced 34 molecules of ATP may be produced 36 molecules of ATP may be produced 38 molecules of ATP may be produced
8.	The Krebs cycle and oxidative phosphorylation take place in:
	 chloroplasts cytoplasm vacuole mitochondria
9.	Glycolysis takes place in:
	 chloroplasts cytoplasm vacuole mitochondria

Energy to convert glucose to hexose bisphosphate in phosphorylation is provided by:

- During anaerobic respiration in yeast, glucose is converted to: 10.
 - o oxygen and water

 - o oxygen
 o water and carbon dioxide
 o ethanol and carbon dioxide