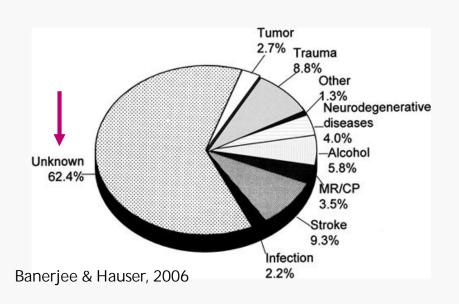
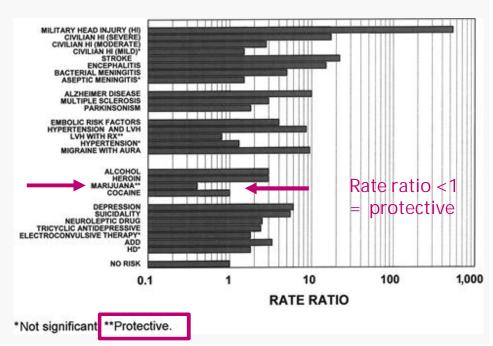


Cannabis and epilepsy from recreational abuse to therapeutic use B. Whalley

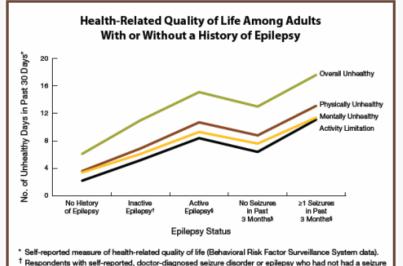
Epilepsy and public health


- Chronic, progressive neurological disorder characterised by spontaneous, recurrent seizures.
- ~10% of people will have a seizure in their lifetime of which ~30% will subsequently develop epilepsy.
- Lifetime prevalence ~ 1%.
- Third most prevalent neurological disorder after migraine and Parkinson's Disease (both ~0.7-1.2%).
- Affects 50 million people worldwide and accounts for 1% of the global burden of disease.



Aetiology of epilepsy

- ~60% of cases are idiopathic (WHO, 2012)
- Remainder are cryptogenic or secondary to insults such as hypoxia (or other trauma) at birth, head trauma, drug use, stroke and CNS infection or tumour.
- Age is an independent risk factor and febrile seizure specific to childhood
- A small minority are due to specifically identifiable molecular/genetic causes.



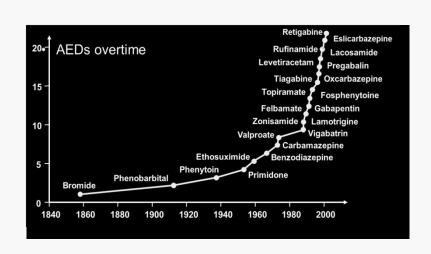
Disease burden and co-morbidities

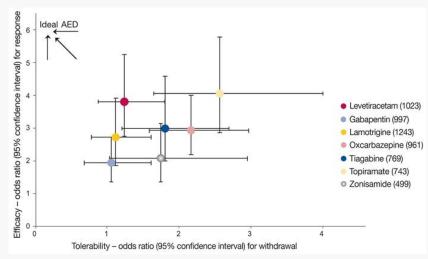
- Example disease burden: \$15.5 billion per year in US (CDC, 2008)
- Premature mortality is 2-3 times higher in epilepsy patients (maximum reported: 8.8).
 - Significant causes: SUDEP, status epilepticus, accidents as a consequence of seizure, aspiration pneumonia after seizure, drug toxicity and idiosyncratic ADRs and suicides (Lhatoo et al, 2006)

⁶ Respondents with self-reported, doctor-diagnosed seizure disorder or epilepsy who were currently taking

in the past 3 months and were not taking medication to control epilepsy

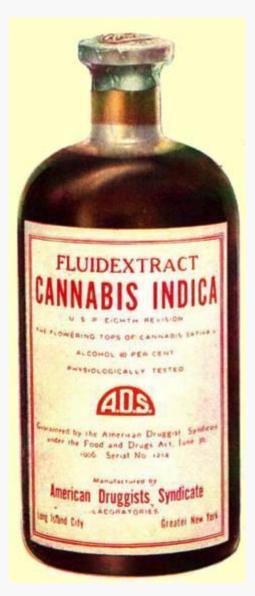
Source: MMWR 2008;57(SS-6).


medication to control it, had one or more seizures in the past 3 months, or both


- Co-morbidities include:
 - Cognitive decline (drug and disease-related)
 - Anxiety
 - Depression
 - Agitation, anger and emotional outbursts
 - Suicide (5-15x more likely)
 - ADHD
 - Reproductive problems (make and female)
 - Insomnia
 - Migraine
- Co-morbidities more frequent and severe in refractory patients

Clinical need for new AEDs

- The introduction of new AEDs since 1990 onwards has had no effect upon the number of pharmacologically intractable/refractory epilepsy patients.
 - Of 525 people with newly diagnosed epilepsy with 2–16 years of follow up, 37% still exhibited seizures at the final clinic visit whilst the remainder were seizure free for ≥1 year.
 - Seizure-free rate did not differ significantly between those treated with a single established drug (67%) and those treated with a single new drug (69%). Thus, new AEDs have not reduced pharmacoresistance (Kwan & Brodie, 2000).
- New AEDs achieve some benefit via improved side-effect profiles.
- New, better tolerated and more effective AEDs are clearly required to benefit the 15-20M people experiencing pharmacologically refractory seizures.



Rational drug design

- How have successful drugs been discovered?
 - Serendipity e.g. valproate, levetiracetam
 - Secondary use of existing drugs e.g. phenobarbital
 - Screening related compounds e.g. phenytoin, ethosuximide
 - 'me too' drugs
 - Modification of existing drugs e.g. oxcarbazepine, pregabalin
 - "Rational"/target oriented design e.g. vigabatrin, tiagabine
- The least successful have come from rational/target-based development.
- Related and modified compounds are typically only effective in epilepsies that already respond to existing treatments.

Historical use of cannabis in epilepsy Reading

- 1100AD: al-Mayusi makes first written record of its use for this purpose
- C15^{th:} Ibn al-Badri notes "the epileptic son of the caliph's chamberlain" was treated with Cannabis and "it cured him completely, but he became an addict who could not for a moment be without the drug"
- C19th: O'Shaughnessy, McMeens, Moreau and Reynolds independently tested the efficacy of a crude extract against seizures.
- J.R. Reynolds, Queen Victoria's personal physician said Cannabis is "the most useful agent with which I am acquainted" in the treatment of "attacks or violent convulsions," which "may recur two or three times in the hour," claiming that such attacks "may be stopped with a full dose of hemp"

Evidence from preclinical models

 Only whole animal models shown since seizures and epilepsy can only be poorly modelled in vitro

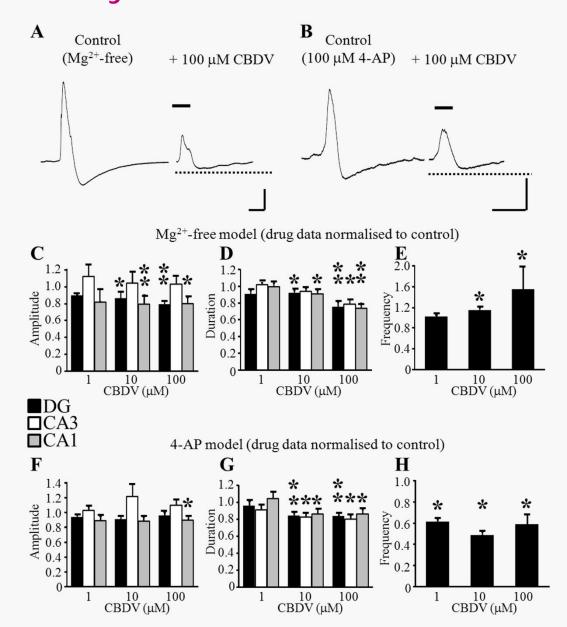
Compound	Species	Number of discrete conditions/models/designs	Dose	Anticonvulsant	No effect	Proconvulsant
THC	6	31	0.25-200 mg/kg	61%	29%	10%
CBD	2	21	1-400 mg/kg	81%	19%	O%
Other plant cannabinoids	2	7	N/A	100%	0%	O%
CB1 receptor agonists	2	55	N/A	73%	18%	2% (7% mixed effect)

 Results strongly support an overall anticonvulsant effect of plant cannabinoids and synthetic CB1R agonists.

Evidence from anecdotal use

- No modern, valid human clinical trials have been conducted
- Six modern case studies report clinically assessed anticonvulsant effects of cannabis
- Five large surveys concluded that some individuals using 'medical marijuana' do so to control symptoms of epilepsy
- Personal correspondence with ~50 UK PWE using cannabis for control of seizures.
- One small scale clinical trial (1981) demonstrated that CBD was anticonvulsant in 7/8 patients treated (no change in placebo group).

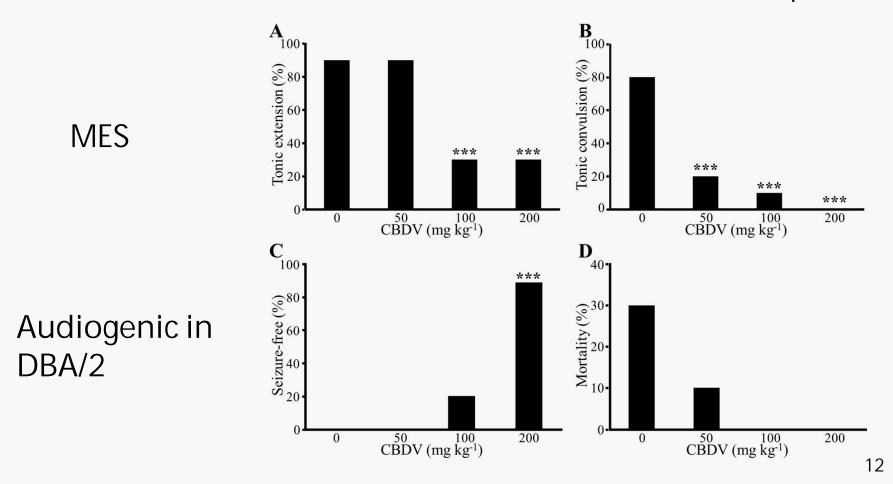
Cannabidivarin (CBDV) pharmacology


- Cannabidivarin (CBDV; also 'cannabidivarol') is a propyl analogue of cannabidiol (CBD).
- First isolated from hashish in 1969 (Vollner et al., 1969) although there is little extant evidence about pharmacological properties or therapeutic uses.
- Existing evidence of pharmacological effects:
 - Stimulates recruitment of bone marrow mesenchymal stromal cells via a CB2 receptor-dependent mechanism (direct effect on CB2 not shown; Scutt & Williamson, 2007)
 - Differential effects at transient receptor potential (TRP) channels in vitro:
 - Acts as an hTRPA1, hTRPV1 and hTRPV2 agonist (EC $_{50}$: 0.42, 3.6 and 7.3 μ M respectively) in transfected HEK-293 cells (De Petrocellis et al, 2011a, De Petrocellis et al, 2011b)
 - Acts a TRPM8 antagonist (IC $_{50}$: 0.90 μ M) in transfected HEK-293 cells (De Petrocellis et al, 2011a).
 - Relevance of TRP target in epilepsy unknown

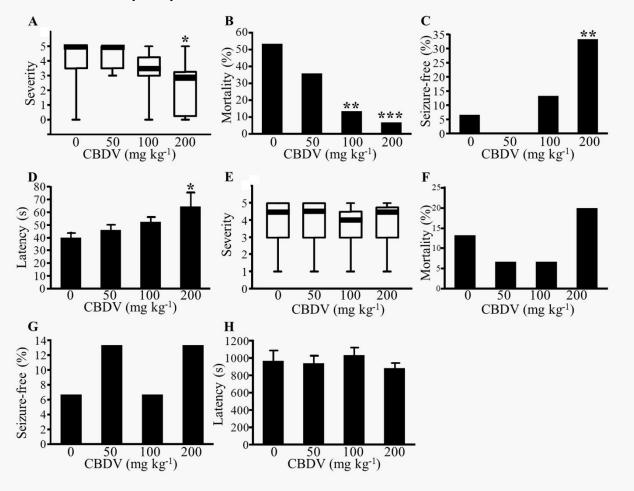
Inhibits diacylglycerol lipase a (DAGLa; IC_{50} : 16.6 μ M) in vitro, the primary synthetic enzyme of the endocannabinoid, 2-arachidonoylglycerol (De Petrocellis et al, 2011a) but relevance to epilepsy unknown.

Relevance of affinity for these targets for epilepsy remains unclear.

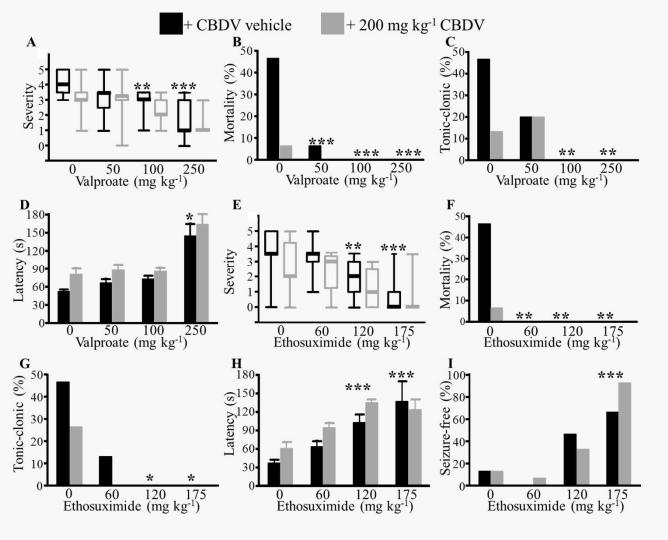
In vitro efficacy



Efficacy vs maximal electroshock seizures and audiogenic seizures

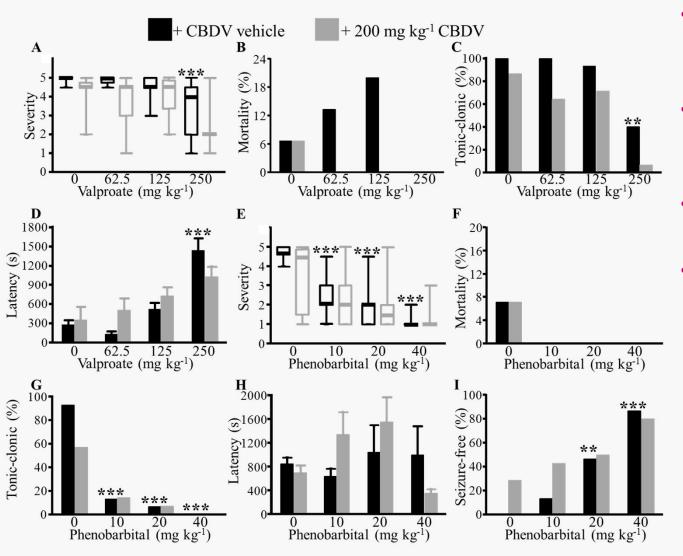

- First line in vivo, mouse models for AED screening
- Both reveal whether or not broad anticonvulsant effects are present.

Efficacy against acute PTZ and pilocarpine induced seizures Reading


- PTZ (panels A-D): model of generalised seizure also indicative of efficacy against absence seizures
- Acute pilocarpine (panels E-H): model of temporal lobe seizures and status epilepticus

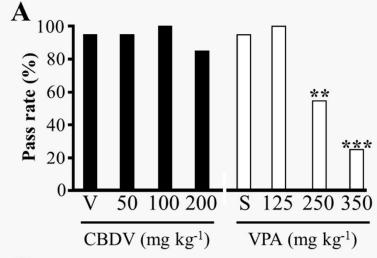
- Significant anticonvulsant effects against acute PTZinduced generalised seizures
- No significant effect against acute, pilocarpine-induced TLS/status epilepticus (in this study).

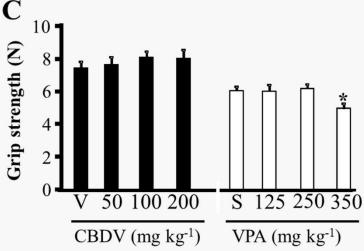
Efficacy and tolerability retained with other AEDs (acute PTZ)

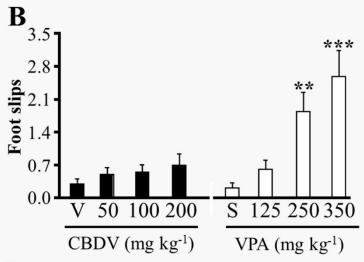


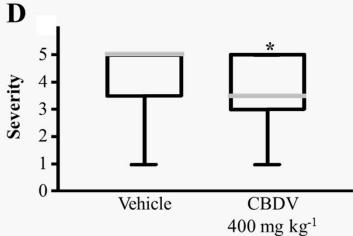
- Safe when coadministered?
- Study drug effect retained?
- Synergism of effects?

Efficacy and tolerability retained with other AEDs (acute pilocarpine)






- Safe when coadministered?
- Study drug effect present?
- Synergism of effects?
- Notably, in this more highly powered study (more animals received study drug), CBDV was anticonvulsant against acute, pilocarpine-induced TLS/status epilepticus


Tolerability and oral efficacy vs PTZ

Acknowledgements

- Collaborators: Dr C. Williams, Dr G. Stephens, Dr G. Woodhall (Aston, UK), Prof.
 L. Sander (NEC & UCL, UK), Prof. E. Williamson & Prof. R. Hampson (Wake, USA).
- Researchers (past and present): Dr A. Hill, Mr N. Jones, Dr S. Weston, Dr J. Farrimond, Dr I. Smith, Dr X. Wang, Dr Y. Yamasaki, Mr T. Hill, Mrs C. Hill, Mr N. Amada, Miss I. Peres, Mrs R. Hadid, Mrs A. Al-Husaini, Mr S. Akiyama, Dr A. Futamura, Miss M. Mercier, Mr S. Marshall.

Sponsors: GW Pharmaceuticals and Otsuka Pharmaceuticals for continued financial and material support.

References

- Banerjee & Hauser (2006) in Epilepsy: a comprehensive textbook Lippincott & Williams (Eds: Engel & Pedley) Chapter 5, pp15
- Center for Disease Control (2008) Morbidity and Mortality Weekly Report 57; SS-6
- De Petrocellis, Ligresti, Moriello, Allara, Bisogno, Petrosino, Stott & Di Marzo (2011) Effects of cannabinoids and cannabinoid-enriched cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. *Br J Pharmacol* 163:1479-1494.
- De Petrocellis, Orlando, Moriello, Aviello, Stott, Izzo & Di Marzo (2011) Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. *Acta Physiol (Oxf)*.
- EMEA (2000) Guidance on Clinical Investigation of Medicinal Products in the Treatment of Epileptic Disorders http://www.emea.eu.int/pdfs/human/ewp/056698en.pdf
- Engel (2006) Report of the ILAE Classification Core Group. *Epilepsia*. 2006;47:1558-1568
- Farrimond, Mercier, Whalley and Williams (2011) Cannabis sativa and the endogenous cannabinoid system Phytotherapy Research 25(2):170-88.
- Gastaut (1970) Clinical and electroencephalographical classification of epileptic seizures Epilepsia 11; 102
- Hill, Jones, Williams, Stephens & Whalley (2010) Development of multi-electrode array screening for anticonvulsants in acute rat brain slices. *J Neurosci Methods* 185:246-256.
- Hill, Williams, Whalley and Stephens (2012) Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacology & Therapeutics 133(1):79-97.
- Hill, Mercier, Hill, Glyn, Jones, Yamasaki, Futamura, Duncan, Stott, Stephens, Williams and Whalley* (2012; ePub ahead of print) Cannabidivarin is anticonvulsant in mouse and rat in vitro and in seizure models British Journal of Pharmacology
- Kwan & Brodie (2000) Early identification of refractory epilepsy. N Engl J Med 342(5):314–9.
- Lhatoo, Sander & Tomson (2006) in Epilepsy: a comprehensive textbook Lippincott & Williams (Eds: Engel & Pedley) Chapter 10, pp1
- Vollner, Bieniek, & Korte F (1969) Hashish. XX. Cannabidivarin, a new hashish constituent. *Tetrahedron Lett* 145-147.
- WHO (2012) http://www.who.int/mediacentre/factsheets/fs999/en/index.html (last accessed 06/01/2012)
- Scutt & Williamson (2007) Cannabinoids stimulate fibroblastic colony formation by bone marrow cells indirectly via CB2 receptors. *Calcif Tissue Int* 80:50-59.