

The systems physiology of exercise

Professor Graham Kemp

Department of Musculoskeletal Biology, Institute of Ageing & Chronic Disease

Magnetic Resonance & Image Analysis Research Centre University of Liverpool

ASE Annual Conference

Biology in the Real World: A Sporting Chance

- 'System physiology'
- Exercise & 'the human machine'
- Methods: VO₂, MRS and others
- Interpreting ³¹P MRS data
- Integrating the methods
- Simulation
- Key concepts & implications for interventions

'System physiology'

- Just physiology?
- The parts ('modules') and the whole
- Interactions & causation
- Quantification, analysis & simulation
- Levels of explanation: scale, time, mechanism
- Methods of study: *ex vivo, in vivo, in silico*
- Manipulation
- Disease (pathophysiology): often complicated

- Physiological challenge
- Inherently multisystem
- Quantitative endpoints
- Relationships to age & health
 - 'Ability to sustain exercise is a key determinant of cardiovascular health, quality of life and mortality'
- Interventions
 - Training, 'exercise prescription', nutrition

'The human machine'

Rossiter, adapted from Wasserman et al, J Appl Physiol 22:71-85, 1967

Exercise tolerance depends on the integration of the <u>pulmonary</u>, <u>circulatory</u> and <u>muscular systems</u> to transport and use O_2 .

The effective integration of these systems' dynamics remains poorly understood.

- ... not forgetting:
 - skeleton, joints & tendons
 - central, peripheral & autonomic nervous system
 - gut, liver & adipose tissue

Measuring aspects of the system

- *Ex vivo* measurements
 - Muscle biopsy metabolites, gene expression, enzymes, histology
 - Blood sampling metabolites, enzymes, gases
- In vivo measurements
 - Magnetic resonance imaging (MRI), ultrasound, DEXA
 - Exercise techniques
 - Muscle magnetic resonance spectroscopy (MRS)
 - Whole body VO_2 kinetics, VO_{2max}
 - Arteriovenous difference (AVD) studies
 - Near-infrared spectroscopy (NIRS)
 - Electromyography (EMG), force & motion analysis

Cardiopulmonary exercise testing

VO₂ response to exercise

Rossiter. Comprehensive Physiology 1: 203-244, 2011

Murgatroyd et al. *J Appl Physiol* **110:**1598-1606, 2011

Magnetic resonance methods

Muscle metabolism in outline

The ³¹P MRS 'window'

• Creatine kinase equilibrium buffers [ATP]

³¹P MRS & muscle: 'mixed' exercise

Muscle at rest: some physiology

Kemp & Bevington *J Theor Biol* **161**: 77-94, 1993 Kemp *J Theor Biol* **170**: 239-246, 1994

Muscle at rest: some data

Estimated resting ATP turnover

Kemp et al. *NMR in Biomed* **20:** 555–565, 2007

Kemp Am J Physiol 294: 640-642, 2008

Analysing metabolic control

Metabolic control analysis

- Flux control distributed between many enzymes
- Multiple activations, most unknown
- Importance of control by demand

http://io9.com/metabolism/

Open- and closed-loop feedback

- ATP turnover is demand-driven, until fatigue
- Closed-loop, integral feedback
- Open-loop, parallel activation?

Error signal

Aerobic metabolism of muscle

Kemp *Mitochondrion* **4:**629-640, 2004

O₂ delivery to mitochondrion

- Net O₂ supply to muscle
 = flow × (arterial-venous [O₂])
- O₂ flux to mitochondrion
 = diffusion coefficient ×(capillary-mitochondrial △PO₂)

Mitochondrial O₂ consumption

- PO₂-dependence of cytochrome oxidase
- Closed-loop feedback by e.g [ADP]
- Open-loop influences?

Richardson et al *J Appl Physiol* **87:**325-331,1999

Mitochondrial metabolism

Studying mitochondria ex vivo

- Mitochondrial numbers & volume
- Molecular genetics: mitochondrial DNA copy number; transcription/expression of e.g. proliferator-activated receptor-γ coactivator 1α (PGC-1α) and genes it controls (e.g nuclear respiratory factors (NRFs), mtTFA)
- In extracts: mitochondrial enzymes: citrate synthase, OGDH
- Isolated mitochondria: ATP production and respiration +/- inhibitors

Mitochondrial function by ³¹P MRS

'Aerobic exercise' at two intensities

Implications for mitochondrial function

Ex vivo: Blomstrand, Rasmussen, Sahlin *In vivo:* Sahlin, Bangsbo, Richardson etc

Measures of 'mitochondrial capacity':

- increase with endurance training,
- decrease with age
- correlate appropriately with mitochondrial content & VO_{2max}
- reduced in disease: mitochondrial, vascular, cardiopulmonary BUT 'maximum' rates are functions of state, assumptions and method

More about muscle mitochondria

Mitochondrial function is a system property

Feedback role of ADP & Pi arises from complexity

Beard *PLoS Comput Biol* **1:** e36.2005 Wu et al. *Am J Physiol* **292**:115-124, 2007. Jeneson et al. *Am J Physiol* **297**:774-784, 2009

Open-loop control?

Cf Wüst et al J Physiol 589: 3995-4009, 2011

Integration of methods: VO₂ &³¹P MRS

ATP turnover increased between 3 and 8 min of supra-lactate threshold (LT), but not sub-LT, exercise.

Thus reduced work efficiency in heavy exercise is partly wholly due to increased contraction cost, although reductions in P:O may also contribute.

2.5

2.0

1.5

.0

0.5

VO₂ (L.min⁻¹)

Human Bioenergetics Research Lab UNIVERSITY OF LEEDS

Simulation: ³¹P MRS recovery data

Experiments shown earlier

A simple model using (pH-dependent acid efflux and ADP-dependent ATP synthesis) reproduces main features of pH- and efflux-dependence of PCr and ADP recovery

Computational approach to O₂ usage

Simulation of VO₂ responses

Effect of muscle blood flow (Q_m) on pulmonary oxygen uptake (VO_2p) kinetics at onset of moderate-intensity exercise

When muscle oxygen consumption (VO_{2m}) lags muscle blood flow (Qm) (upper curves) venous oxygen content (CvO_{2m}) is well maintained in the transient. If vice versa, CvO_{2m} undershoots

Rossiter. Comprehensive Physiology 1: 203-244, 2011

- Systems & modules; organs, pathways
- Feedback, stability
- Supply & demand, challenge & response
- Steady-state vs kinetic responses
- Dynamic range, quantitation
- Control coefficients
- Levels of explanation/causation
 - spatial & temporal
 - mechanisms metabolic, signalling, genetics & epigenetics, expression

Key concepts

- Interventions
 - Training: strength, endurance, daily activity
 - Nutrition
 - Pharmacotherapy
- Issues:
 - 'control strength'
 - trade-offs
 - understanding vs engineering vs empirics