Brewing-up the technologies of tomorrow with synthetic biology

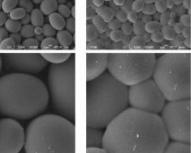
Imperial College London

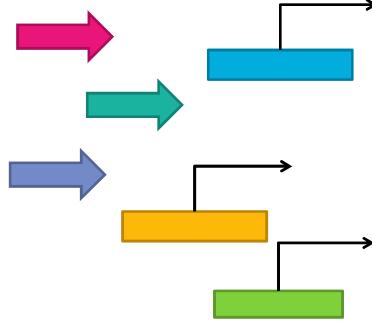
CSYNBI Centre for Synthetic Biology and Innovation

Dr Tom Ellis

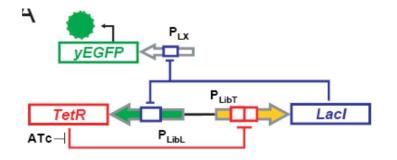
Centre for Synthetic Biology and Innovation Department of Bioengineering Imperial College London

Sedimentation of yeast by flocculation genes

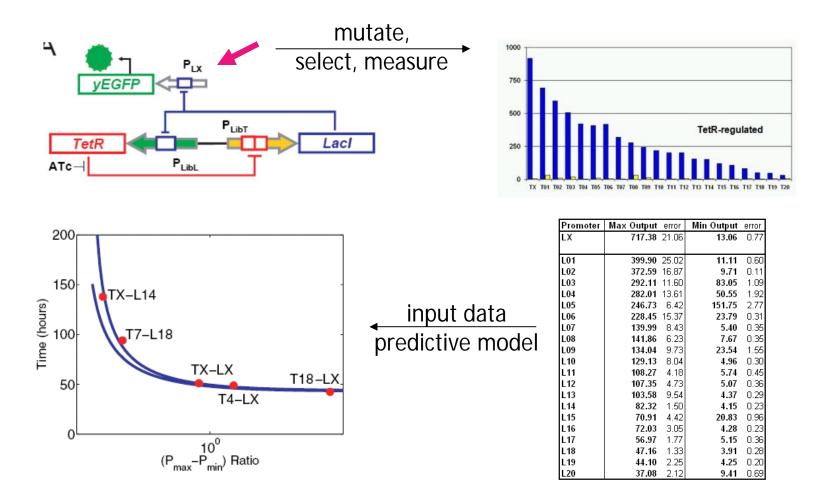




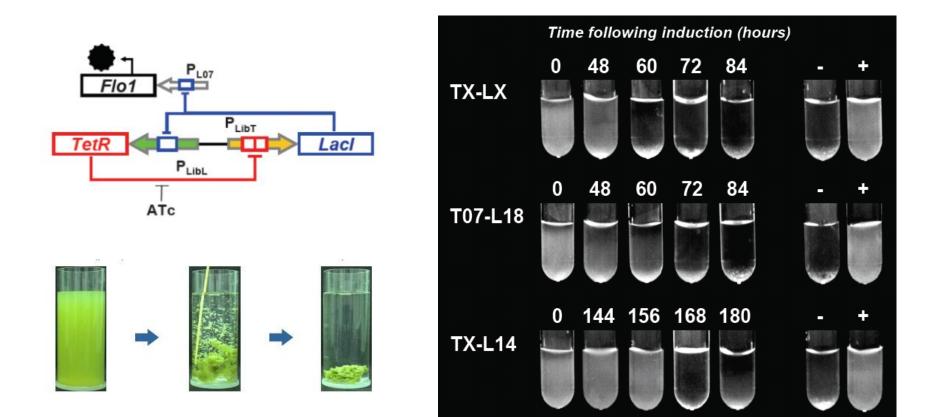
Because flocculation is unpredictable, brewers use *isinglass* or mechanical purification using huge centrifuges and big filters



Design & build a DNA-coded timer from parts



SOURCE DNA: BACTERIA, PLANTS, JELLYFISH


Timer 'networks' that can be tuned predictably

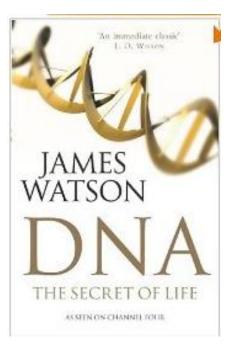
3 promoter 'nodes', 20 promoters per library = 8000 possible networks Predictable custom gene networks with diverse reset times

Timer networks control yeast sedimentation

Modular timer networks 'wired in' to control flocculation rather than GFP

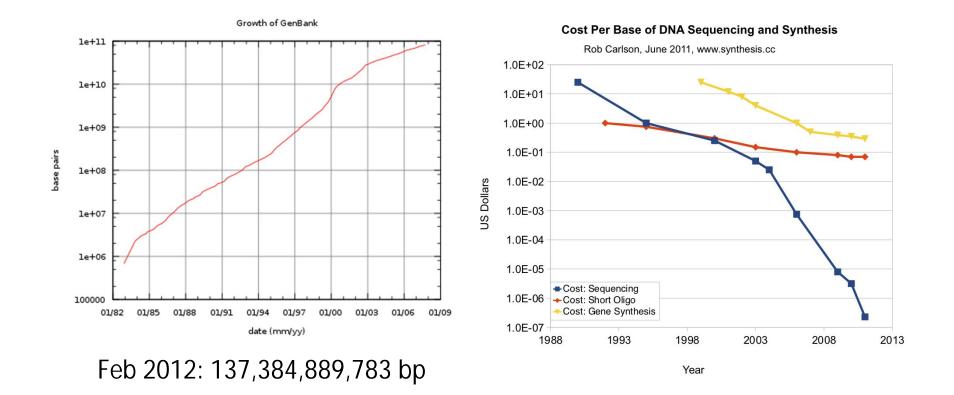


Synthetic Biology

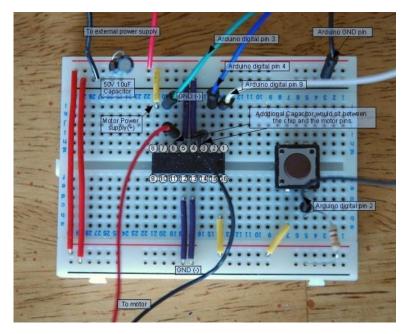

Synthetic biology is the engineering of biology: the synthesis of complex, biologically based (or inspired) systems which display functions that do not exist in nature.

Source: High-level Expert Group European Commission

Engineering Biology



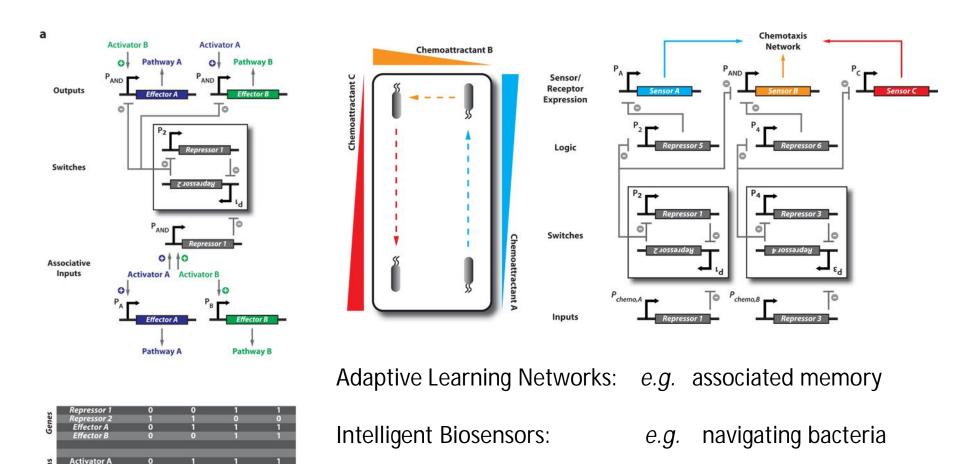
Synthetic biology is 'hacking' the code books for life: DNA genomes



There's almost a limitless amount of DNA to play with

- Biology is now an *information science* based on DNA code
- Custom DNA sequence can ordered to be written chemically

Re-wiring microbiology for new applications



Synthetic Biology

The Cell

Microbes respond and make decisions using networks of interacting genes

Example synthetic biology Apps

Effector A

Activator

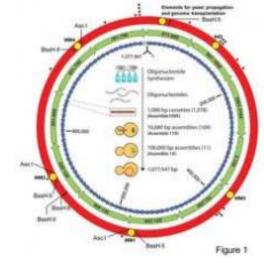
0

A


01 10 01

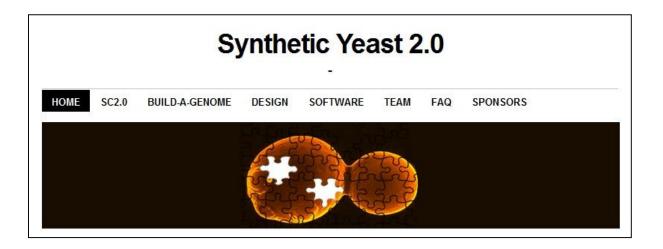
A B

A

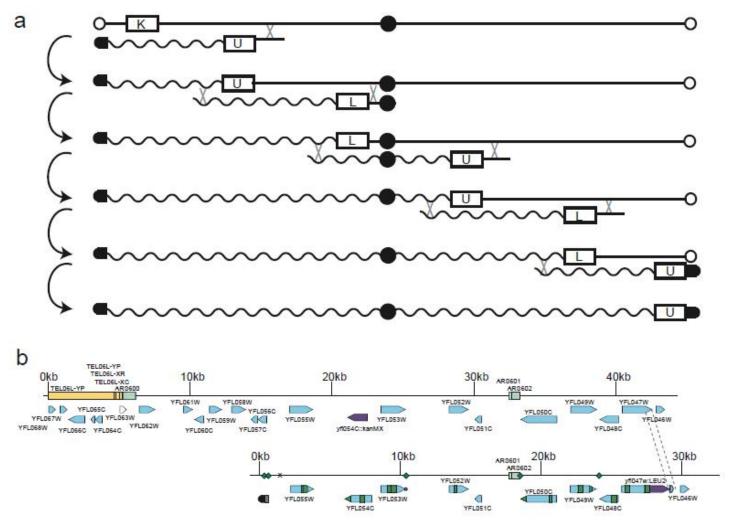

Next-generation synthetic gene networks Timothy K Lu, Ahmad S Khalil & James J Collins Nature Biotechnology 27, 1139 - 1150 (2009)

Rewriting whole Operating Systems

2010: J. Craig Venter Institute


Complete synthesis of a 1 million base pair bacterial genome from electronic code

Sc2.0 – A Human-made Yeast Genome


Project = Synthetic Yeast 2.0 http://biostudio.bme.jhu.edu/sc2/

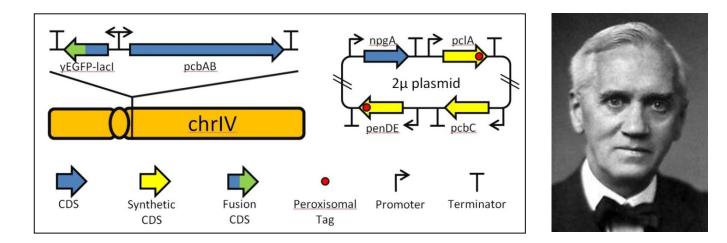
A major international project now in 4 countries: USA, China, UK and India

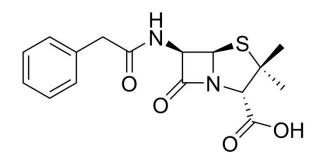
Complete synthesis and assembly of a modified synthetic yeast genome of 11 million base pairs

Swapping natural DNA sequence for synthetic in yeast

Reiterative Recombination Method

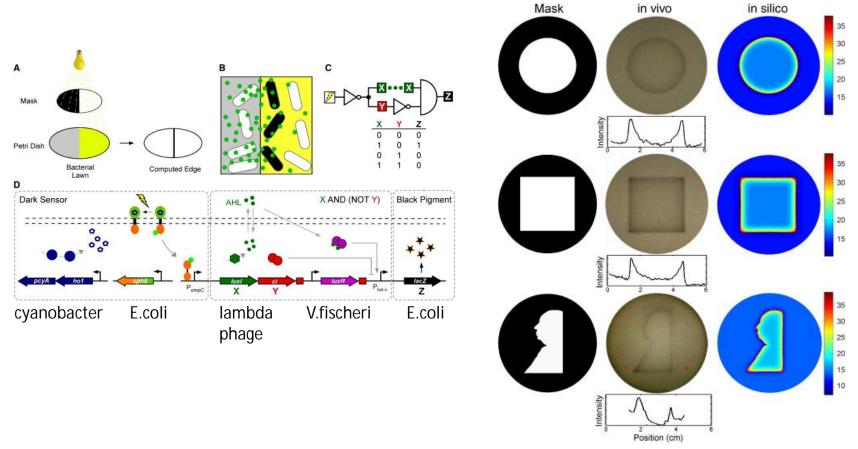
Requires two selectable markers


Makes use of yeast's ability to recombine matching sequences


SERIAL process

Sc2.0 – A global project

	Dec 2012 sta	tus
100 300 500 700 900 1100 1300 1500 1700 1900	MADE	INT
I JHU 229,237	20%	0%
BGI 813,138	48%	8%
Ⅲ JHU 315,339	100%	100%
IV JHU/JGI 1,531,974	0%	0%
V Tianjin U 576,870	90%	8%
JHU/GenScript 270,148	100%	70%
VII BGI 1,090,936	0%	0%
VIII JHU 562,638	20%	0%
IX JHU 439,885	100%	95%
X BGI 745,440	0%	0%
XI Imperial College London 666,448	13%	0%
XII Tsinghua U 1,078,172	75%	22%
XIII BGI 924,430	0%	0%
XIV Hong Kong Univ? 784,328	0%	0%
XV CSIR, India? 1,091,283	0%	0%
XVI Pondicherry U, India? 948,61	0%	0%


Synthetic Yeast to Brew beyond beer

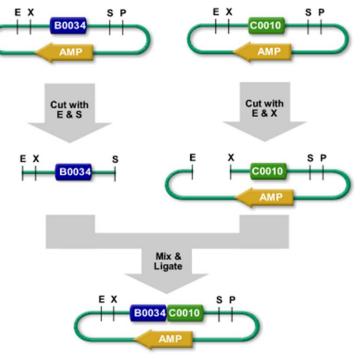
Penicillin Biosynthesis encoded into synthetic yeast chromosomes

Amazing Apps have been built by students

Following an abstraction similar to electronic engineering

2005 – Students at a summer school

iGEM is a synthetic biology competition



iGEM uses BioBricks – modular DNA parts

Registry of Standard Parts

-?-	Name	Description	Promoter Sequence	
A	BBa_11051	Lux cassette right promoter	tgttatagtcgaatacctctggcggtgata	Γ
	BBa_l12001	Promoter (PRM+)	gatttaacgtatcagcacaaaaaagaaacc	Γ
Ą	BBa_l12006	Modified lamdba Prm promoter (repressed by 434 cl)	attacaaactttcttgtatagatttaacgt	Ī
A	BBa_112036	Modified lamdba Prm promoter (cooperative repression by 434 cl)	tttcttgtatagatttacaatgtatcttgt	Ī
A	88a_l12040	Modified lambda P(RM) promoter: -10 region from P(L) and cooperatively repressed by 434 cl	tttcttgtagatacttacaatgtatcttgt	Ī
	BBa_I12212	TetR - TetR-4C heterodimer promoter (negative)	actetyteaatyatayaytyyatteaaaaa	İ
R.	BBa_114015	P(Las) TetO	ttttggtacactccctatcagtgatagaga	İ
8	BBa_l14016	P(Las) CIO	ctttttggtacactacctctggcggtgata	İ
A V	V BBa_l14032	promoter P(Lac) IQ	aaacotttogoggtatggcatgatagogoo	İ
N V	V BBa_1714889	OR21 of PR and PRM	tattttacctctggcggtgataatggttgc	İ
X V	V BBa_1714924	RecA_DlexO_DLacO1	actctcggcatggacgagctgtacaagtaa	İ
€ ?	BBa_1715003	hybrid pLac with UV5 mutation	ttgtgagcggataacaatatgttgagcaca	İ
1	BBa_1718018	dapAp promoter	cattgagacacttgtttgcacagaggatgg	İ
	BBa_1731004	FecA promoter	ttctcgttcgactcatagctgaacacaaca	İ
V	V BBa_1732200	NOT Gate Promoter Family Member (D00101wt1)	gaattgtgagcggataacaattggatccgg	İ
V	BBa_1732201	NOT Gate Promoter Family Member (D001011)	ggaattgtgagcgctcacaattggatccgg	l
V	V BBa_1732202	NOT Gate Promoter Family Member (D001022)	ggaattgtaagcgcttacaattggatccgg	l
	BBa_1732203	NOT Gate Promoter Family Member (D001033)	ggaattgtaaacgtttacaattggatccgg	İ

Standard Modular Assembly

IGEM 2006 DNA-2	Registry of Standard Biological Parts

Open source distributed parts kit

PARASIGNT Imperial College London

Proje

Result

Extras

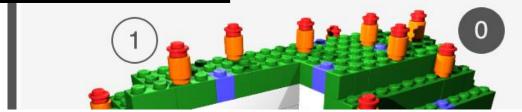
Parasight | Parasite detection with a rapid response

CSYNBI

Department of Bioengineering Division of Molecular Biosciences

Parasight

Welcome to the Imperial College London iGEM 2010 project! It's been a busy four months, and there have been highs and lows, but we're happy with how things have turned out. Here's a brief introduction...


"More than two billion people around the world live with unrelenting illness due to parasites" - WHO Director General Lee Jong-wook.

Synthetic biology offers great opportunity for biosensors, however current designs require hours of waiting before a detectable output is produced. To tackle this issue in the field, it is crucial that a new generation of biosensors be designed that can respond in minutes. With this in mind, we have engineered a fast, modular sensor framework which allows for quick detection of a range of different parasites, and may also be used as an environmental tool for mapping their spread. In particular we have designed and modified *B. subtilis* to give a clearly visible colour readout upon detecting the waterborne Schistosoma parasite which affects 200 million people worldwide.

You can take a look at our cellular overview below. Follow the link below to take a quick tour of the wiki. The links on the right lead to elements we feel are interesting additions to the core project. Or just head for the main menu above if you know what you're looking for.

Click here to take the tour ...

BILL& MELINDA GATES foundation

Extra Links

Welcome to a very basic model of our cell. The main features are the cell wall, the cytoplasm, a two component signaling

Categories :

Image Gallery

Project :

Overview

Leave a Message!

Sensitivity Tuner

- Modelling

The Future

Notebook :

Safety

Week 1

Week 2

Week 3 Week 4

Week 5

Week 6 Week 7

Week 8

Week 9 Week 10

Protocols

Stock List Research

Team Logistics :

Shared Links and Help

- Characterisation

Colour Generators

- Melanin (Brown)

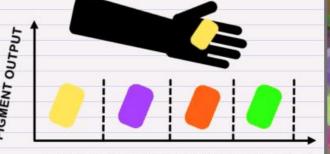
- Carotenoids (Orange/Red)

-- Violacein (Purple/Green)

Parts Submitted to Registry

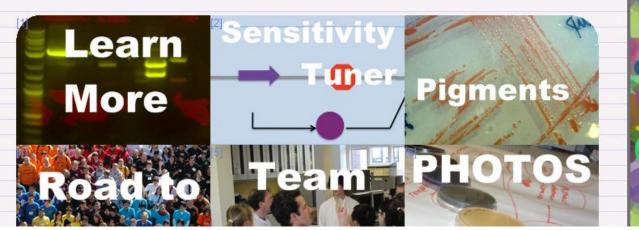
Team Sponsors

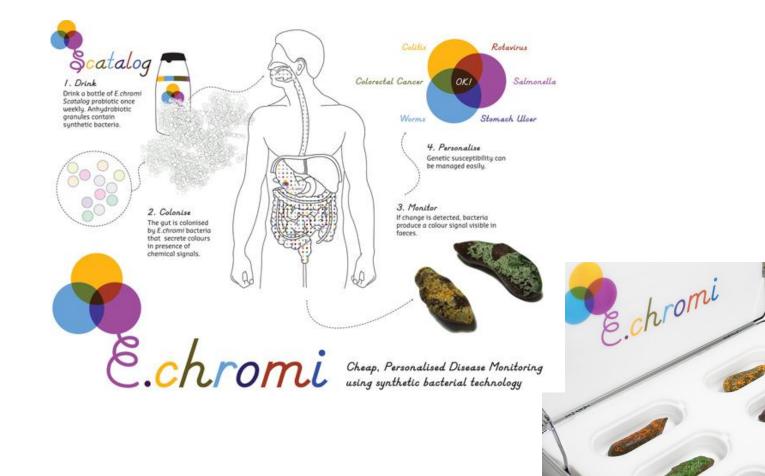
E. Chromi


MINAT

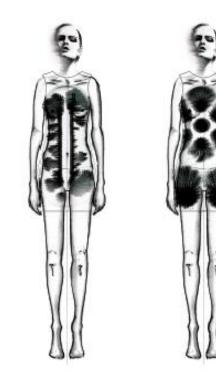
The Cambridge 2009 iGEM team has created two kits of parts that will facilitate the design and construction of biosensors in the the future.

SOOTH ANNIVERSARY


Previous iGEM teams have focused on genetically engineering bacterial biosensors by enabling bacteria to respond to novel inputs, especially biologically significant compounds. There is an unmistakable need to also develop devices that can 1) manipulate input by changing the behaviour of the response of the input-sensitive promoter, and that can 2) report a response using clear, user-friendly outputs. The most popular output is the expression of a fluorescent protein, detectable using fluorescence microscopy. But, what if we could simply see the output with our own eyes?


We successfully characterised a set of transcriptional systems for calibrated output - Sensitivity Tuners. We also successfully expressed a spectrum of pigments in *E. coli*, designing a set of Colour Generators.

CONCENTRATION OF CHEMICAL INPUT ->



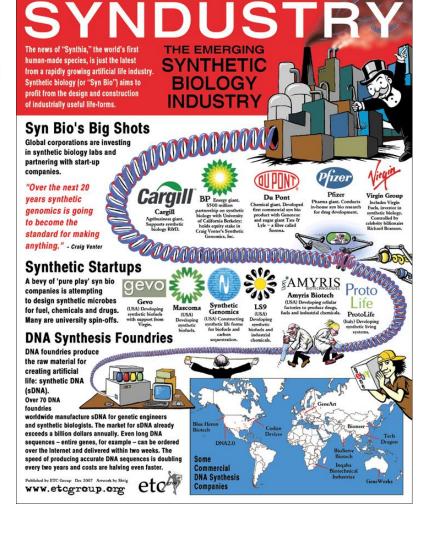


With James King and Daisy Ginsberg

With Nicola Morgan (RCA Fashion)

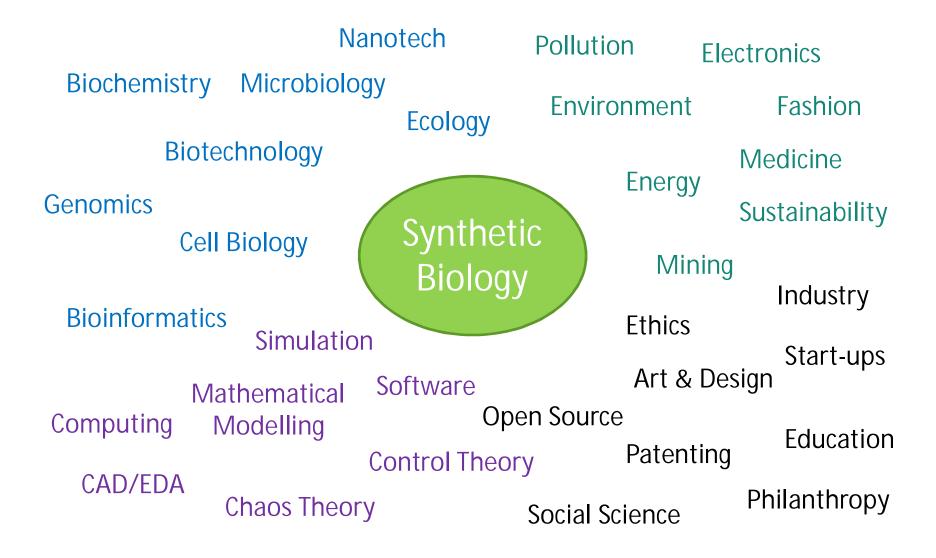
- Biofuels and hydrogen to replace petrol and oil, made from sunlight and CO₂
- Cheaper, faster production of anti-malarials and rare or new antibiotics
- Bacteria that enrich soil with natural fertilisers
- Plants that detect explosives from landmines
- Rapid 'printing' of new vaccines
- Microbes or viruses to detect and kill cancers

- Cell-based computers and hard-drives
- Buildings that grow and change
- Yoghurt that makes your farts smell like mint
- Microbes to colonise Mars
- Targeted bio-weapons such as personalised viruses or crop-spoiling pests


Is this safe?

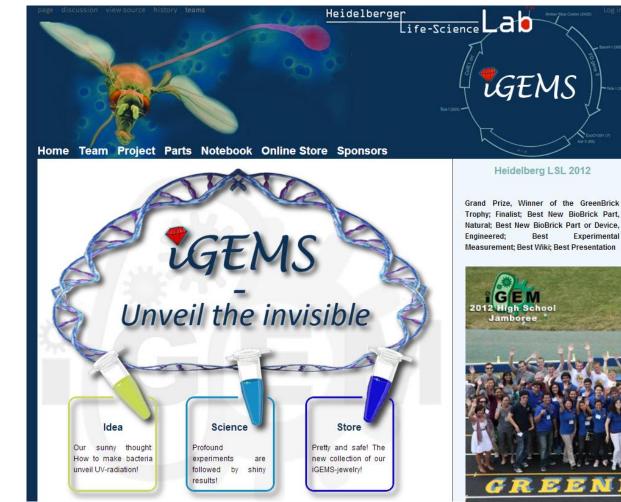
clencewise

BIO


Synthetic Biology Dialogue

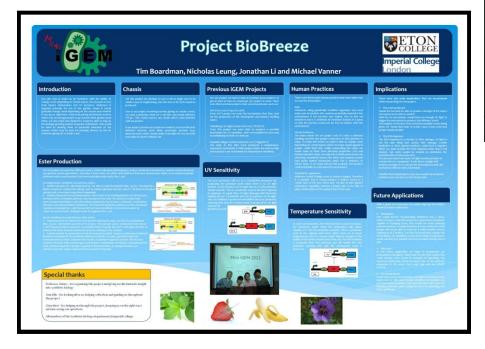
EPSRC

Ploneering research


BBSRC

Bringing together disciplines

High School iGEM


iGEM HS runs from August to May, with finals in June. Allows leaders to work with students schedules and allow school students to experience synthetic biology.

Mini-iGEM and Work-Experience iGEM

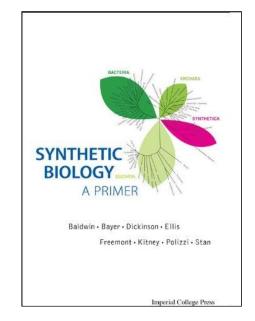
Two weeks to:

- brainstorm and develop a project idea
- write-up a description of the project
- consider the implications of it
- code a simulation of how it works
- present the project to the class

Further Information

Synthetic Biology at Imperial College London http://www3.imperial.ac.uk/syntheticbiology

Imperial College London CSYNBI Centre for Synthetic Biology and Innovation


The Ellis Lab http://openwetware.org/wiki/Ellis_Lab

Synthetic Biology: A Primer Textbook

http://www.amazon.co.uk/Synthetic-Biology-Paul-S-Freemont/dp/1848168632

Further Information

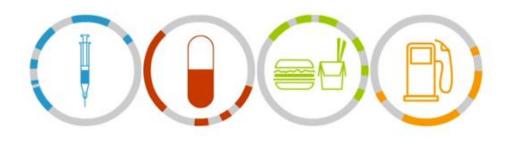
The iGEM competition and Schools iGEM

http://igem.org/Main_Page

The BioBricks Parts Registry http://partsregistry.org/Main_Page

The BioBricks Foundation http://biobricks.org/

The Woodrow Wilson Project: synthetic biology 101 http://www.synbioproject.org/topics/synbio101/



Woodrow Wilson International Center for Scholars

Further Information

Short excellent video describing synthetic biology http://www.youtube.com/watch?v=rD5uNAMbDaO

David Shukman visits Imperial's Synthetic Biology Centre http://www.bbc.co.uk/news/science-environment-17511081

BBC News article by David Shukman http://www.bbc.co.uk/news/science-environment-17436365

Horizon 1 hour special on Synthetic Biology with Adam Rutherford http://www.bbc.co.uk/programmes/b01b45zh